Does Classifier Fusion Improve the Overall Performance? Numerical Analysis of Data and Fusion Method Characteristics Influencing Classifier Fusion Performance

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis and Comparison of Linear Combiners for Classifier Fusion

In this paper, we report a theoretical and experimental comparison between two widely used combination rules for classifier fusion: simple average and weighted average of classifiers outputs. We analyse the conditions which affect the difference between the performance of simple and weighted averaging and discuss the relation between these conditions and the concept of classifiers’ “imbalance”....

متن کامل

Performance measures of the tomographic classifier fusion methodology

We seek to quantify both the classification performance and estimation error robustness of the authors’ tomographic classifier fusion methodology by contrasting it in field tests and model scenarios with the sum and product classifier fusion methodologies. In particular, we seek to confirm that the tomographic methodology represents a generally optimal strategy across the entire range of proble...

متن کامل

Classifier Fusion Using Triangular Norms

This paper describes a method for fusing a collection of classifiers where the fusion can compensate for some positive correlation among the classifiers. Specifically, it does not require the assumption of evidential independence of the classifiers to be fused (such as Dempster Shafer’s fusion rule). The proposed method is associative, which allows fusing three or more classifiers irrespective ...

متن کامل

Genetic algorithms in classifier fusion

An intense research around classifier fusion in recent years revealed that combining performance strongly depends on careful selection of classifiers to be combined. Classifier performance depends, in turn, on careful selection of features, which could be further restricted by the subspaces of the data domain. On the other hand, there is already a number of classifier fusion techniques availabl...

متن کامل

Applying Pairwise Fusion Matrix on Fusion Functions for Classifier Combination

We propose a new classifier combination scheme for the ensemble of classifiers. The Pairwise Fusion Matrix (PFM) constructs confusion matrices based on classifier pairs and thus offers the estimated probability of each class based on each classifier pair. These probability outputs can then be combined and the final outputs of the ensemble of classifiers is reached using various fusion functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2019

ISSN: 1099-4300

DOI: 10.3390/e21090866